
Object-Oriented
Programming

 4 - 1

OBJECT-BASED
PROGRAMMIN

G
LANGUAGES

-- Ada --
Ada Program Units Reserved Words Blocks

and Subprograms
Main Programs Package STANDARD Packages
Ada Program Unit Lib Types Generic Units
Character Sets Operators Tasks
Lexical Units Statements Exceptions

Object-Oriented
Programming

 4 - 2

Ada Program
UnitsAda source file -- contains one or more Ada program units

An Ada Program or System is composed of one or more
program units, where a program unit is:
l a subprogram
l a package
l a task
l a generic unit
Each program unit is divided into two parts:
l a specification, which defines its interface to the outside
world
l a body, which contains the code of the program unit

Object-Oriented
Programming

 4 - 3

Program Units:
SUBPROGRAM

A subprogram is an expression of sequential
action.
Two kinds of subprograms exist:
l procedure
l function

Object-Oriented
Programming

 4 - 4

Program Units:
PACKAGE

A package is:
l a collection of computational resources, including
data types, data objects, exception declarations, and
other program units (subprograms, tasks, packages, and
generic units)
l a group of related items

Object-Oriented
Programming

 4 - 5

Program Units:
TASK

A task is:
l an action implemented in parallel with other tasks
l a code item which may be implemented on one
processor, a multiprocessor (more than one CPU), or a
network of processors
l composed of a specification and a body

Object-Oriented
Programming

 4 - 6

Program Unit: GENERIC
UNIT

A generic unit is:
l a reusable software component
l a special implementation of a subprogram or package
which defines a commonly-used algorithm in data-
independent terms

Object-Oriented
Programming

 4 - 7

Procedures as Main
Programs

Ada does not have a separate construct for a main
program.

Instead, Ada program units (subprograms, packages,
tasks, and generic units) are compiled into an Ada library
and then, at some later time, one of the procedures is
selected to be the mainline procedure at which execution
of the program is to start.

A main procedure has no parameters.

Object-Oriented
Programming

 4 - 8

Ada and the Ada Program Unit
Library

Ada Program Unit
Libraries

Current
Ada Program Unit

Library

Ada
Compiler

Source File 1
(package,
procedure)

Source File 2
(2
procedures)

Source File
3
(generic)

Object-Oriented
Programming

 4 - 9

Creating an
Executable

Ada Program Unit
Libraries

Current
Ada Program Unit

Library

Ada
Binder

Executable
Based on an

Ada
Procedure

Object-Oriented
Programming

 4 - 10

Basic and Extended Character
SetsThe Basic Character Set (BCS) is one of two character sets used by

Ada programs:
l The BCS was designed to facilitate transportability between
computer systems.
l The BCS consists of:
m uppercase letters only: A-Z
m digits: 0-9
m special characters: " # ' () * + - / , . : ; < = > _ | &
m the space character
The Extended Character Set (ECS) maps to the 95-character ASCII
(American Standard Code for Information Interchange) set:
l The ECS consists of:
m all characters in the BCS
m more special characters: ! ~ $? @ [] \ ` { } ^ %
m lower-case letters: a-z

Object-Oriented
Programming

 4 - 11

Package
ASCIIPackage ASCII within the supplied package STANDARD provides:

l names for the non-printing ASCII characters
l names for the characters in the ECS which are not a part of
the BCS
Examples:
c1 : character := ASCII.NUL;
c2a : character := '#';
c2b : character := ASCII.SHARP; -- same as c2a
c3a : character := 'a';
c3b : character := ASCII.LC_A; -- same as c3a

Object-Oriented
Programming

 4 - 12

Lexical
UnitA Lexical Unit is a basic token of the Ada language which is

built from the character sets:
l comments
-- this is a comment, starting at the -- and
-- going to the end of the line
l identifiers (a letter followed by zero or more letters,
digits, and underscores, and case is not significant)
A THIS_IS_A_TEST FACTOR_44
hello_world usart_status_flag
package -- this is a reserved word
l numeric literals (real/floats and integers in bases 2 to
16)
45 2.7 9.9e-56 1_000_000 16#F.2C#
2#0010# 7#16# 8#1_377# 16#0c2b# 16#CC_48#
3.14159_26535_89793_23846_26434

Object-Oriented
Programming

 4 - 13

Lexical Unit,
Continuedl character literals

'A' '*'
''' -- the character '
l strings
"hello, world"
"" -- the empty string
"""" -- a string whose content is "
l delimiters (single and compound)
' () * + , - . / : ; < = > | &
=> .. ** := /= >= <= << >> < >
Notes:
l Any number of spaces (and lines) may separate lexical
units
l A lexical unit must fit on one line

Object-Oriented
Programming

 4 - 14

Reserved
Words

Reserved words are identifiers which may be used in only
certain contexts:
l They may NOT be used as variables, enumeration
literals, procedure names, etc.
l They may be a part of strings ("my package is in").
l They may be a part of other lexical units (e.g.,
PACKAGE_52 is O.K.).

Object-Oriented
Programming

 4 - 15

Package
STANDARDPackage STANDARD is automatically withed and used by all Ada

program units.
Package STANDARD contains:
l type BOOLEAN and the associated operations
l type INTEGER and the associated operations
l type FLOAT and the associated operations
l the types universal real, universal integer, and universal fixed
along with their associated operations
l type CHARACTER and the associated operations
l package ASCII (provides alternate character representations)
l subtype NATURAL and subtype POSITIVE
l type STRING and the associated operations
l type DURATION (a fixed point type used to represent time)
l several predefined exceptions

Object-Oriented
Programming

 4 - 16

Type Definitions
and

Object
Declarations

A type is a class of objects which characterizes:
l a set of values which

objects of that type may take on
l a set of attributes

(e.g., INTEGER'LAST is the last integer)
l a set of operations

which may be performed on objects of that type
Several classes of types are available in Ada:

l scalar data types l
access data types

m integer l
private data types

m real (floating point
and fixed point) l subtypes

m enumeration l
derived types

l composite data
types

m array
m record

Object-Oriented
Programming

 4 - 17

Scalar Data
Typesl integer:

INTEGER -- a predefined type
NATURAL -- a predefined type, >= 0
POSITIVE -- a predefined type, >= 1
type INDEX is range 1..50; -- user-defined
l real (floating point and fixed point):
FLOAT -- a predefined type
type MASS is digits 10; -- 10 sig digit user-defined float
type VOLTAGE is delta 0.01 -- a user-defined fixed point
 range 0.0 .. 50.0;
l enumeration:
BOOLEAN -- a predefined type (FALSE, TRUE)
CHARACTER -- a predefined type
type COLOR is (RED, GREEN, BLUE); -- user-defined

Object-Oriented
Programming

 4 - 18

Numeric and Discrete
Types

Integer Real
Enumeration

Numeric X X
Discrete X X

It is important to be able to
distinguish between numeric and
discrete types since only discrete
types may be used for loop
variables.

Object-Oriented
Programming

 4 - 19

Universal
Typesl The following classes of universal types exist:

m Universal Integer
m Integer Literals, e.g.

12
m Integer Named Numbers, e.g.

DOZEN : constant := 12;
m Universal Real
m Real Literals, e.g.

3.14159
m Real Named Numbers, e.g.

PI : constant := 3.14159_26535;
l Clarification:
DOZEN : constant INTEGER := 12; -- type INTEGER
DOZEN : constant := 12; -- universal integer

Object-Oriented
Programming

 4 - 20

Subtypes and Derived
Typesl Subtypes are types created from an existing "parent"

type which are distinct but compatible with the parent.
Objects of a subtype may be mixed with objects of the
parent type in an expression:
subtype SINT is INTEGER range 1..10;
I : Integer; SI : SINT;
SI := 5; I := 10 + SI;
l Derived types are types created from an existing
"parent" type which are distinct and separate
(incompatible) from the parent:
type SINT is new INTEGER range 1..10;
I : Integer; SI : SINT;
SI := 5; I := 10 + SI; -- will raise an error at compile time
l Derived types are different from subtypes:
m A derived type introduces a new type, distinct from its
parent.
m A subtype places a restriction on an existing type,
compatible with its parent.

Object-Oriented
Programming

 4 - 21

Array
sAn array is an object that consists of multiple homogenous

components (i.e., each component is of the same type).

An entire array is referenced by a single identifier:
type FLOAT_ARRAY is array (1..10) of FLOAT;
 -- type declaration
My_Float_Array : FLOAT_ARRAY;
 -- array reference and definition

Each component of an array is referenced by the identifier
which references the array being followed by an index in
parentheses:
My_Float_Array(5) := 12.2; -- assign one element
for i in My_Float_Array'First .. My_Float_Array'Last loop
 My_Float_Array(i) := 0.0; -- initialize all elements
end loop;

Object-Oriented
Programming

 4 - 22

Array Type
StatementThe general syntax is:

type array_type_name is array
(index_specification) of element_type;

l array_type_name is the name given to this type, not the
name of a specific array; specific arrays are declared later as
array objects
l index_specification is the type and value range limits, if
any, of the index
l element_type is the type of the array elements

Object-Oriented
Programming

 4 - 23

Array
AggregatesAn entire array may be initialized by assigning it to an array

aggregate.

type MENU_SELECTION is (SPAM, MEAT_LOAF, HOT_DOG, BURGER);
type DAY is (MON, TUE, WED, THU, FRI);
type SPECIAL_LIST is array (DAY) of MENU_SELECTION;
Specials:SPECIAL_LIST;
Specials := SPECIAL_LIST'(SPAM, HOT_DOG, BURGER, MEAT_LOAF, SPAM);
Specials := (SPAM, HOT_DOG, BURGER, MEAT_LOAF, SPAM);
Specials := (MON => SPAM,
 TUE => HOT_DOG,
 WED => BURGER,
 THU => MEAT_LOAF,
 FRI => SPAM);
Specials := (MON | FRI => SPAM,
 TUE | WED | THU => BURGER);
Specials := (MON .. WED => BURGER, others => MEAT_LOAF);

Object-Oriented
Programming

 4 - 24

More Notes on
Arraysl Arrays may have as many dimensions as desired.

l So far, array types have been constrained (i.e., the number of
elements in the arrays have been determined in advance). In Ada,
array types may also be unconstrained, where the objects derived
from these types are not constrained until the definitions of these
objects:
type FLOAT_ARRAY is array (NATURAL range <>) of FLOAT;
My_Array : FLOAT_ARRAY(1..10); -- 10 elements
His_Array : FLOAT_ARRAY(5..12); -- 8 elements
Zero_Array : constant FLOAT_ARRAY := (0.0, 0.0, 0.0); -- 3 elements
l A STRING is an unconstrained array indexed by POSITIVE of
CHARACTER objects. The type STRING is predefined in the
package STANDARD:
type STRING is array (POSITIVE range <>) of CHARACTER;
l Once a STRING object has been defined, it may be assigned a
value by using array aggregate notation or by using quotes:
My_Name : STRING(1..4) := "John";
My_Name := ('J', 'i', 'm', ' ');

Object-Oriented
Programming

 4 - 25

Boolean
VectorsA boolean vector is a user-defined type which is a vector of

BOOLEANs:
type BOOLEAN_VECTOR is array (POSITIVE range <>) of BOOLEAN;
A Boolean vector is the only type of array that can be operated
on by the logical operators and, or, xor, and not.

declare
 T : constant BOOLEAN := TRUE; F : constant BOOLEAN := FALSE;
 A : BOOLEAN_VECTOR (1..4) := (T, F, T, F);
 B : BOOLEAN_VECTOR (1..4) := (T, F, F, T);
 C : BOOLEAN_VECTOR (1..4);
begin
 C := not A; -- yields (F, T, F, T);
 C := A and B; -- yields (T, F, F, F);
 C := A or B; -- yields (T, F, T, T);
 C := A xor B; -- yields (F, F, T, T);
end;

Object-Oriented
Programming

 4 - 26

Array Attributes and
OperationsSome interesting array attributes are:

FIRST -- first index value LAST -- last index value
RANGE -- array'FIRST .. array'LAST LENGTH -- number of

elements
These attributes apply to array objects (which are, of course,

constrained) and constrained array types. Operations on arrays
are:

Operation Restrictions
Attributes (FIRST, etc) None
Logical (not, and, or, xor) Must be BOOLEAN vectors of

same
 length and type

Concatenation (&) Must be vectors
Assignment (:=) Must be of the same size and type
Type Conversions Same size and component and index

types
Relational (<,>,<=,>=) Must be discrete vectors of same

type
Equality (=, /=) Must be of the same type

Object-Oriented
Programming

 4 - 27

Record Types without
DiscriminantsThe most basic kind of record is that declared without

discriminants. The general syntax of a record type declaration
is:
type record_type_name is record
 record_components;
end record;
Example:
 type MY_RECORD is record
 I : Integer;
 F : Float;
 end record;

Object-Oriented
Programming

 4 - 28

Record Types with
DiscriminantsRecord types with discriminants may be used to define records

to be of the same type even though the kind, number, and size
of the components differ between individual records.
Variant records are those that differ from one another in the
kind and number of components. Example:
type RECORDING_MEDIUM is (PHONOGRAPH, CASSETTE, CD);
type MUSIC_TYPE is (CLASSICAL, JAZZ, NEW_AGE, FOLK, POP);
type RECORDING (Device : RECORDING_MEDIUM := CD) is record
 Music : MUSIC_TYPE;
 case Device is
 when PHONOGRAPH =>
 Speed : RPM;
 when CASSETTE =>
 Length : NATURAL;
 when CD => null;
 end case;
end record;

Object-Oriented
Programming

 4 - 29

Access
Typesl Access types are used to declare variables (pointers)

that access dynamically allocated variables. A dynamically
allocated variable is brought into existence by an allocator
(the keyword new). Dynamically allocated variables are
referenced by an access variable, where the access variable
"points" to the variable desired.
l Example:
type INTEGER_ACCESS_TYPE is access INTEGER;
P1, P2 : INTEGER_ACCESS_TYPE;
P1 := new INTEGER; P1.all := 5;
P2 := P1;

P1:

P2:

Integer
:

5<address
>

<address
>

Two pointers
which
address the
same
object.

Object-Oriented
Programming

 4 - 30

Representation
AttributesThe following are attributes which may be applied to various

entities in order to determine some of their specifics:
l ADDRESS -- reports the memory location of an object,
program unit, label, or task entry point
l SIZE -- reports the size, in bits, of an object, type, or
subtype
l STORAGE_SIZE -- reports the amount of available storage
for access types and tasks; if P is an access type,
P'STORAGE_SIZE gives the amount of space required for an
object accessed by P; if P is a task, P'STORAGE_SIZE gives the
number of storage units reserved for task activation
l POSITION (records only) -- reports the offset, in storage
units, of a record component from the beginning of a record
l FIRST_BIT (records only) -- reports the number of bits that
the first bit of a record component is offset from the
beginning of the storage unit in which it is contained
l LAST_BIT (records only) -- reports the number of bits that
the last bit of a record component is offset from the
beginning of the storage unit that contains the first bit of the
record component

Object-Oriented
Programming

 4 - 31

The 4 Representation
Clausesl Length clauses -- establish amount of storage space used for

objects
type DIRECTION is (UP, DOWN, RIGHT, LEFT);
for DIRECTION'SIZE use 2; -- 2 bits
l Enumeration clauses -- specify the internal representation of
enumeration literals
type BIT is (OFF, ON);
for BIT'SIZE use 1;
for BIT use (OFF => 0, ON => 1);
l Record Representation clauses -- associate record
components with specific locations in bit fields
l Address clauses -- specify the addresses of objects
CPU_STATUS : Integer; -- define object
for CPU_STATUS use at 16#080#; -- define address

Object-Oriented
Programming

 4 - 32

Operato
rsPrecidence Operators Notes

 Highest ** not abs
* / mod rem

Multiply operators
+ - Unary

operators
+ - & Binary

operators
= /= < <= >

>= Relational operators
in not in

Membership operators
and or xor

Logical operators
 Lowest and then or else Short-circuit

operators

Object-Oriented
Programming

 4 - 33

Statemen
tsA statement is a sequence of characters terminated by a

semicolon (;).

Value := Value + 1; -- an assignment statement
Value
:=
2
; -- another assignment statement
Value := 2; -- same as the last statement

Object-Oriented
Programming

 4 - 34

Statements,
Continuedl sequential control l

iterative control
m assignment m

exit
m block m loop
m null
m return l other

statements
m procedure call
m abort

m accept
l conditional control

m code
m case m delay
m if m entry call

m goto
m raise
m select

These are all the kinds of
statements recognized by
Ada
compilers.

Object-Oriented
Programming

 4 - 35

Statements: Sequential
Controll assignment l null

Value := 1; null;
Value := l return
 SQRT(B**2 + A**2); return;

l block return PI*2.0;
declare -- vars local to block l procedure call
 local_1 : integer; Text_IO.Put_Line("Hello");
begin -- code of the block Put ("Enter text: ");
 local_1 := 2; Stacks.Push(100.0,

My_Stack);
 value := value / local_1;
end; -- end of the block

Object-Oriented
Programming

 4 - 36

Statements: Conditional
Controll if l case
 if Stop_Light = RED then case Value is
 Stop; when 1 | 3 | 5 | 7 | 9 =>

Kind := ODD;
 elsif Stop_Light = GREEN then when

others => Kind := EVEN;
 Look_Both_Ways; Go; end case;
 elsif Stop_Light = YELLOW then case Value is
 Close_Eyes; Go_Fast; when 0 .. 9 =>

Kind := LESS_THAN_10;
 else when others => Kind :=

TEN_OR_MORE;
 Stop; Look_Both_Ways; Go; end case;
 end if; case Stop_Light is
 if Value > 10 then when RED => Stop;
 Value := Value - 10; when GREEN =>

Look_Both_Ways; Go;
 end if; when YELLOW => Close_Eyes;

Go_Fast;
 when others => Stop; Look_Both_Ways; Go;
 end case;

Object-Oriented
Programming

 4 - 37

Statements: Iterative
Controll two kinds of exit statements

exit; -- unconditional
exit when A = 0; -- conditional

l three kinds of loops
loop -- simple loop while Status_Bit = OFF loop
 Bit := Status_Bit; null; -- while loop
 exit when Bit = ON; end loop;
end loop;
i := 42;
for i in 1 .. 20 loop -- for loop, outer I is hidden
 sum := sum + i;
end loop;
sum := sum + i; -- outer I is visible again

Object-Oriented
Programming

 4 - 38

Blocks and
Subprogramsl Blocks, procedures, and functions contain three parts:

m an optional declarative part, in which local variables are
defined
m an executable statement part, in which the code resides
m an optional exception handler
l The declarative part contains declarations of types and
subtypes, variables and constants, procedures and functions, and
packages.
l The entities brought into existence in the declarative part
only exist as long as the block, procedure, or function in which
they reside is active.
l The executable statement part contains executable
statements, such as assignment or control statements.
l The exception handler traps error conditions, or exceptions,
and processes them.
l Procedures and functions are collectively called subprograms.
 A subprogram is one of the four program units in Ada, where
packages, generic units, and tasks are the other three.

Object-Oriented
Programming

 4 - 39

Block
s

The general form of a block:
declare -- optional
 -- variable definitions
begin
 -- statements
 null;
exception
 -- exception handler
end;

Object-Oriented
Programming

 4 - 40

Subprogra
msSubprograms are the basic units of sequential execution in

an Ada system.
There are two classes of subprograms:
l procedures -- accept and return values in parameter lists
l functions -- accept values in parameter lists and only
return one value
Parameter lists contain three classes of formal parameters:
l in -- parameter values are passed into subprograms
l out -- parameter values are passed out of subprograms
(procedures only)
l in out -- parameter values are passed both ways
(procedures only)

Object-Oriented
Programming

 4 - 41

Subprograms:
FunctionsThe general syntax of a function is:

function function_name (parameters) return type;
 -- function specification
function function_name (parameters) return type is -- body
 -- variable definitions
begin
 -- statements
exception
 -- exception handler
end function_name;

Object-Oriented
Programming

 4 - 42

Subprograms:
ProceduresThe general syntax of a procedure is:

procedure procedure_name (parameters); -- spec
procedure procedure_name (parameters) is -- body
 -- local variables
begin
 -- statements
exception
 -- exception handler
end procedure_name;

Object-Oriented
Programming

 4 - 43

Notes on
Subprograms

l Overloading: Subprogram names may be overloaded (i.e.,
two or more subprograms may have the same names but
different types or numbers of parameters), and Ada can
resolve these from context.
l Recursion: A subprogram may call itself, or recurse.

Object-Oriented
Programming

 4 - 44

Package
s

A package is an encapsulation mechanism in Ada, allowing
the programmer to collect groups of entities together. As a
rule, these entities should be logically related. A package
usually consists of two parts: a specification and a body.
Packages directly support object-oriented programming,
providing a means to describe a class or object (an abstract
data type).

Object-Oriented
Programming

 4 - 45

Package Specifications and
BodiesThe general form of a package specification is:

package package_name is
 -- visible declarations
private
 -- private type declarations
end package_name;
The general form of a package body is:
package body package_name is
 -- implementations of code and hidden data
begin
 -- initialization statements
end package_name;

Object-Oriented
Programming

 4 - 46

Uses of
Packages

l Collections of constants and type
declarations
l Collections of related functions
l Abstract State Machines
l Abstract Data Types

Object-Oriented
Programming

 4 - 47

Notes on
Packagesl Package bodies may contain an optional initialization

part. If this is present, the code of the initialization part of
a package is executed before the first line of code in the
mainline procedure.
l Packages may be embedded in: blocks, subprograms,
other packages, and any program unit in general.
l A private type is a type definition which is visible in the
specification of a package, but its underlying
implementation is hidden from the code withing the
package and is of no concern to the outside world.
l Private types are the means of implementing abstract
data types in Ada. In a package containing a private type,
the only operations which may be performed on objects of
that type are assignment, tests for equality and inequality,
and the procedures and functions explicitly exported by the
package.
l In a package containing a limited private type, the only
operations which may be performed on objects of that type
are the procedures and functions explicitly exported by the
package.

Object-Oriented
Programming

 4 - 48

Generic
UnitsGeneric subprograms and packages, which are templates

describing general-purpose algorithms that apply to a variety
of types of data, may be created in Ada systems.
Generic functions look like:
generic
 -- generic formal parameters
function function_name (parameters) return type; -- spec
Generic procedures look like:
generic
 -- generic formal parameters
procedure procedure_name (parameters); -- spec
Generic packages look like:
generic
 -- generic formal parameters
package package_name is -- spec
 -- normal package stuff
end package_name;

Object-Oriented
Programming

 4 - 49

Generic Formal
Parametersl There are three kinds of generic formal

parameters: types, objects, and subprograms.
l Types as generic formal parameters:

Type Parameter Operations Allowed Data Types
type T is private; = /= := All assignable
type T is limited private; --none-- All
type D is (<>); = /= := > >= < <= Discrete

PRED SUCC
FIRST LAST

type I is range <>; integer operations Integer
type F is digits <>; real operations Float
type FIXED is delta <>; fixed point

operations Fixed
l Object declarations may appear as

formal parameters.
l Subprograms may appear as formal

parameters.

Object-Oriented
Programming

 4 - 50

Tasks

In Ada, one can write programs that perform more than one
activity concurrently. This concurrent processing is called
tasking, and the units of code that run concurrently are
called tasks.
l A simple format for task specifications and bodies:
task task_name; -- specification
task body task_name is -- body
 -- local variable declarations
begin
 -- code
end task_name;
l A more complex format:
task task_name is -- spec
 entry entry_name (parameters);
end task_name;
task body task_name is -- body
begin
 accept entry_name (parameters) do -- code follows
 end entry_name;
end task_name;

Object-Oriented
Programming

 4 - 51

Tasks That
RendezvousThe interfacing of two tasks in order to pass data is called a

rendezvous in Ada. The following is a representative timeline
for two such tasks:Calling

Task
Acceptor
Task

Execution of
accept
statement

Concurrent
processing
resumes

A B CEvents
:
Key to Events --
A Acceptor task reached an accept statement and is
waiting for a call to its entry point.
B Calling task calls the Acceptor task at its entry
point, and the Acceptor task executes code in the
accept statement.
C The accept statement is completed, data is
transferred back to the Calling task if necessary, and
both tasks resume concurrent operation.

Object-Oriented
Programming

 4 - 52

Exception
sl Two kinds of errors are commonly encountered in

programming: compilation errors and runtime errors.
l In Ada, runtime errors are called exceptions. Exceptions
may be predefined or user-defined. To define an exception:
Exception_Name : exception;

To raise an exception:
raise Exception_Name;
l Exception handlers are Ada constructs that handle
exceptions. An exception handler is placed at the end of a
block, subprogram, package, or task, and is denoted by the
keyword exception followed by the text of the handler code.
Example (for a block):
begin -- note that I is defined external to the block
 I := I / 0; -- division by zero
exception
 when NUMERIC_ERROR =>
 I := 10;
end;

Object-Oriented
Programming

 4 - 53

Exception
Propagationl If the program unit that raises an exception does not

contain an exception handler that handles the exception, the
exception is propagated to the next level beyond the unit.
This level varies, depending on the unit raising the exception:
m If the unit is a mainline procedure, the Ada runtime
environment handles the exception by aborting the program.
m If the unit is a block, the exception is passed to the
program unit (or block) containing the block that raised the
exception.
m If the unit is a subprogram, the exception is passed to the
program unit or block that called the subprogram.
l The propagation path of an exception is determined at
runtime.
l To reraise the current exception in an exception handler,
the statement
raise;

may be used.

Object-Oriented
Programming

 4 - 54

Suppressing
ExceptionsAda performs many checks at runtime to ensure that array

indices are not exceeded, variables stay within range, etc. If
these checks fail, exceptions are raised.
This results in larger code and slower execution speed.
In certain real-time applications, where space and time
constraints are critical, runtime error checking may be too
expensive. A solution is to use exception suppression.
Exception suppression turns off runtime error checking. It
is implemented by a pragma (a compiler directive) called
SUPPRESS:
pragma SUPPRESS (RANGE_CHECK);
 -- turns off range checking on array indices and variable values
pragma SUPPRESS (RANGE_CHECK, INTEGER);
 -- turns off range checking on integers only
pragma SUPPRESS (RANGE_CHECK, X);
 -- turns off range checking for a particular object

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

